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Integral models proposed to simulate positively buoyant jets are used to model jets
with negative or reversing buoyancy issuing into a calm, homogeneous or density-
stratified environment. On the basis of the self-similarity assumption, ‘top hat’ and
Gaussian cross-sectional distributions are employed for concentration and velocity.
The entrainment coefficient is considered to vary with the local Richardson number,
between the asymptotic values for simple jets and plumes, estimated from earlier
experiments in positively buoyant jets. Top-hat and Gaussian distribution models
are employed in a wide range of experimental data on negatively buoyant jets,
issuing vertically or at an angle into a calm homogeneous ambient, and on jets
with reversing buoyancy, discharging into a calm, density-stratified fluid. It is found
that geometrical characteristics such as the terminal (steady state) height of rise, the
spreading elevation in stratified ambient and the distance to the point of impingement
are considerably underestimated, resulting in lower dilution rates at the point of
impingement, especially when the Gaussian formulation is applied. Reduction of
the entrainment coefficient in the jet-like flow regime improves model predictions,
indicating that the negative buoyancy reduces the entrainment in momentum-driven,
negatively buoyant jets.

1. Introduction
Liquid wastes from desalination or geothermal plants, as well as from industrial

operations, are usually heavier than the receiving ambient waters. Frequently, these
liquids are discharged into a water body as negatively buoyant jets. Also, an initially
positively buoyant jet in a density-stratified ambient will eventually become negatively
buoyant, once it passes through the elevation of neutral buoyancy (mean spreading
elevation). The environmental impact of negatively buoyant jet discharges can be
predicted once we evaluate the basic properties of a dense jet, such as spreading
distances and dilution. This is usually obtained via physical or computational
modelling.

Several (mainly one-dimensional) computational models regarding steady state
buoyant jets have been proposed in the past. Recently, Wang & Law (2002)
and Yannopoulos (2006) have proposed second-order integral models for vertical,
positively buoyant jets, which take into consideration the turbulent mass and
momentum fluxes. Jirka (2004) has proposed an integral model widely known as
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Corjet to simulate buoyant jets discharging at different angles with respect to the
horizontal in an unbound ambient fluid with uniform density or stable density
stratification under stagnant or steady sheared current conditions. This model has
been compared with experimental data of earlier investigations, with a very good
overall agreement when applied to positively buoyant jets.

The entrainment hypothesis relating the inflow velocity to the mean local one in
turbulent shear flows is summarized by Turner (1986), who has discussed in detail the
turbulent entrainment rate in several types of such flows. The entrainment coefficient
α in positively buoyant jets is generally assumed to be variable. Experiments suggest
that α takes the asymptotic values αj and αp in momentum-driven (jet-like) and
buoyancy-driven (plume-like) flows respectively and the values in between at the
transition from jets to plumes. The evaluation of the entrainment coefficient, used
in integral models, has been studied in the past. It is usually obtained through
expressions of its asymptotic values and the local buoyant jet Richardson number
R(s), s being the distance from the origin along the jet axis. An expression proposed
by Priestley & Ball (1955) is based on the conservation of energy and reads

α = αj − (αj − αp)

(
R(s)

Rp

)2

, (1)

where Rp is the limiting, plume Richardson number. A second empirical formula
proposed by List (1982) is

α = αj exp

[
ln

(
αp

αj

)(
R(s)

Rp

)2
]
. (2)

The local Richardson number R(s) in a buoyant jet is defined as

R(s) =
μ(s)β(s)1/2

m(s)5/4
, (3)

where μ(s), m(s) and β(s) respectively are the specific mass, momentum and buoyancy
fluxes at a distance s from the origin. Typical values for these parameters have been
estimated by Fischer et al. (1979) and List (1982) to be αj = 0.0535, αp = 0.0833
and Rp = 0.557. They have also been evaluated experimentally by Papanicolaou &
List (1988), who suggested the values αj =0.0545, αp = 0.0875 and Rp = 0.63, where
Rp was computed using the momentum flux due to the mean flow. More recently,
Jirka (2004) has employed an expression similar to that proposed by Priestley &
Ball (1955) for the entrainment coefficient, introducing the local densimetric Froude
number instead of the Richardson number, yielding the values αj = 0.055, αp = 0.083
and Rp =0.522 (computed from the corresponding Froude number 4.67).

Negatively buoyant jets have been investigated in experimental studies by several
researchers. Experiments regarding the maximum (initial) and terminal (steady state)
penetration heights in vertical negatively buoyant round jets (figure 1a) have been
reported by Turner (1966), Baines, Turner & Campbell (1990), Lindberg (1994), Zhang
& Baddour (1998) and Bloomfield & Kerr (2000) and recently by Papanicolaou &
Kokkalis (2008). Experiments on inclined dense jets (figure 1b) regarding geometrical
characteristics such as the rise height and the distance from the point of impingement
have been reported by Zeitoun, McIlhenny & Reid (1970), Roberts & Toms (1987),
Roberts, Ferrier & Daviero (1997), Lindberg (1994) and Bloomfield & Kerr (2002)
and recently by Papakonstantis, Kampourelli & Christodoulou (2007). However, only
Roberts & Toms (1987) and Roberts et al. (1997) have provided results about dilution.
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Figure 1. Definition diagram for (a) vertical negatively buoyant jet in uniform ambient,
(b) inclined negatively buoyant jet in uniform ambient and (c) vertical buoyant jet in linearly
density-stratified ambient.

Vertical round buoyant jets in a linearly density-stratified calm ambient (figure 1c),
have been reported by Fan (1967), Wong & Wright (1988), Bloomfield & Kerr
(1998) and Konstantinidou & Papanicolaou (2003). The data from these experiments
could potentially be used to evaluate numerical models, which may be employed for
prediction.

Wong & Wright (1988) used a Gaussian model to predict the maximum height of
rise of round, vertical buoyant jets in a linearly stratified calm ambient. In the regime
of initially jet-like flows, the maximum rise height was substantially underestimated
if compared to that obtained experimentally. Konstantinidou & Papanicolaou (2003)
proposed a reduced value of the jet entrainment coefficient in order to match the
measured maximum height of rise of vertical jets in linearly density-stratified fluid
with that estimated by Gaussian one-dimensional modelling.

Papanicolaou & Kokkalis (2008) have experimentally evaluated the maximum and
steady state penetration depths of vertical fountains to be 3lM and 2lM , respectively,
with lM being a characteristic length scale (Fischer et al. 1979). In an attempt to predict
the terminal penetration depth with a one-dimensional integral model using the above
parameters, they showed that model predictions may deviate up to 15% from the
observed values. Abraham (1967) has proposed a model to estimate the height of
rise of vertical jets issuing in a homogeneous ambient: it predicted a terminal height
of rise of 2.06lM , which is generally in agreement with the reported heights from
several experiments (Turner 1966; Roberts & Toms 1987; Zhang & Baddour 1998;
Papanicolaou & Kokkalis 2008). Recently, Jirka (2004) has applied Corjet to predict
the height of rise of a vertical fountain issuing into a homogeneous environment. For
initially jet-like flows, Corjet predicted the terminal rise height of vertical fountains to
be about 2.2lM , defined as the sum of axis elevation and the adopted jet visual width√

2b. Note that the value of b used is not reported, although the computed jet width
at this elevation becomes theoretically infinite (m= 0).

Corjet has also been applied to dense jets inclined at 60◦. The model prediction
regarding the terminal height of rise is 1.9lM , which is lower than the measured heights
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2.2lM and 2.1lM reported by Roberts & Toms (1987) and Papakonstantis et al. (2007),
respectively. The predicted centreline dilution at the terminal rise height is 0.29Fo,
where Fo is the jet densimetric Froude number (Fischer et al. 1979) that is lower
than 0.38Fo measured by Roberts & Toms (1987). Besides, comparison of Corjet
results for the trajectory of a 55◦ inclined jet with the experimental data of Hutter
& Hofer (1978) show that the model underestimates the outer, visual jet boundary
(maximum rise height and distance from the point of impingement) by approximately
15%.

Furthermore, Corjet has been applied to estimate the maximum and terminal height
of rise of vertical round jets and plumes in a linearly density-stratified ambient fluid.
The agreement between experiments and predictions for initially plume-like flows has
been found to be satisfactory (Wong & Wright 1988; Konstantinidou & Papanicolaou
2003; Jirka 2004). However, for jets Corjet predicted a maximum height of rise (sum of
centreline elevation and visual width

√
2b) of 3.3lj and a mean horizontal spreading

elevation of about 1.5lj , with lj being the characteristic length scale for jets in a
stratified environment (Fischer et al. 1979). The corresponding measured elevations
by Wong & Wright (1988) are 3.6lj and 2.6lj , while those by Konstantinidou
& Papanicolaou (2003) are 3.55lj and (2–2.5)lj . Although the maximum height
of rise seems to be underestimated by approximately 10%, the deviation is
considerable (30–40%) for the spreading elevation and consequently for the average
dilution.

In summary, the attempts to simulate negatively buoyant jets using the parameters
measured in positively buoyant ones usually underestimate (i) the maximum rise
height and spreading elevation in a linearly stratified ambient and (ii) the maximum
rise height and the corresponding dilution, as well as the distance from the point
of impingement in inclined jets in homogeneous ambient, if compared to available
experimental data.

A possible reason for the deviations between models and measurements may be
attributed to the values of the entrainment coefficient. Higher entrainment coefficients
in jet-like flows result in higher dilution rates and consequently in lower heights
of rise. Kaminski, Tait & Carazzo (2005) have stated that the entrainment is
significantly reduced in flows with negative buoyancy if compared to that in simple
jets. However, their study does not rely on measurements of velocity distributions.
From experiments they have inferred a reduced entrainment coefficient, using the
analytical expression proposed by Woods & Caulfield (1992). A value of 0.057
(≈ 0.04

√
2, top-hat formulation) is used to match their experimental results regarding

the volume flux which corresponds to the threshold between buoyant convection and
partial collapse to a fountain. Kaminski et al. have also proposed an expression for
the entrainment coefficient similar to that of Priestley & Ball (1955), which contains
an extra nonlinear term modifying the first term αj in (1). Carazzo, Kaminski &
Tait (2006) have evaluated the terms introduced in that expression, using the data
regarding only positively buoyant jets.

In the present work, it is shown that experimentally observed parameters regarding
the steady state (terminal) or spreading heights in flows with negative or reversing
buoyancy, as well as the distance from the point of impingement for discharges at
an angle and the corresponding dilutions, can be obtained using significantly lower
values of the jet entrainment coefficient than that of a simple jet, αj ≈ 0.055 (Fischer
et al. 1979; List 1982; Papanicolaou & List 1988). The flows under investigation
are initially momentum-driven (jet-like); i.e. their initial Richardson number is very
small.
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2. Integral model and dimensional arguments
2.1. Description of the integral model

A definition diagram for three separate cases of negatively buoyant jets is given in
figure 1. The time-averaged Reynolds equations of motion are written in cylindrical
polar coordinates (s, r), assuming that s measures the distance along the axis and that
r is perpendicular to the jet axis, while θ is the local angle of jet axis to the horizontal
(figure 1b); u is the velocity component in the s direction; g is the gravitational
acceleration and ρa the ambient fluid density. Assuming that the pressure deviation
from a hydrostatic distribution within the jet is neglected, and the Boussinesq
approximation is valid, the volume flux, the specific momentum and buoyancy fluxes
over a jet cross-section A perpendicular to the axis are (List 1982)

μ(s) =

∫
A

u(r, s) dA =

∫ ∞

0

u(r, s)2πr dr, (4)

m(s) =

∫
A

u2(r, s) dA =

∫ ∞

0

u2(r, s)2πr dr, (5)

β(s) =

∫
A

g
[ρa − ρ(r, s)]

ρa

u(r, s) dA =

∫ ∞

0

g
[ρa − ρ(r, s)]

ρa

u(r, s)2πr dr. (6)

In the above equations the cross-sectional area A is considered to be circular; ρ is the
jet density, and g′ = g(ρa − ρ)/ρa is the effective gravitational acceleration.

The mean velocity and excess or deficiency density profiles are assumed to be
Gaussian (Jirka 2004):

u = uc exp(−r2/b2) and g′ = g′
c exp −[r2/(λb)2], (7)

where λ is the concentration to velocity 1/e–width ratio, and c denotes centreline
values. Using the local variables μ = πb2uc, m= πb2u2

c/2 and β = πb2ucg
′
cλ

2/(λ2 +1) in
(4)–(7), the volume, momentum and buoyancy conservation equations of a turbulent
buoyant jet in a density-stratified ambient with buoyancy frequency N, are written as
follows:

dμ

ds
= 2

√
2παm1/2; (8)

dm

ds
=

1 + λ2

2

μβ

m
sin θ; (9)

dθ

ds
=

1 + λ2

2

μβ

m2
cos θ; (10)

dβ

ds
= μ

g

ρα

dρα

dz
sin θ = −μN2 sin θ. (11)

The geometry of the jet trajectory is defined as

dx

ds
= cos θ, (12)

dz

ds
= sin θ. (13)

The set (8)–(13), hereafter referred to as the Gaussian model, is based on the model
formulation by Fan (1967) for inclined, round buoyant jets. However, making a top-hat
assumption regarding the cross-sectional velocity and excessive or deficient density
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distribution, (8)–(10) can be written as

dμ

ds
= 2

√
παm1/2, (14)

dm

ds
=

μβ

m
sin θ, (15)

dθ

ds
=

μβ

m2
cos θ, (16)

where the entrainment coefficient α in Gaussian modelling has been replaced by α
√

2
in top-hat modelling and (8)–(10) by (14)–(16).

The set of six nonlinear differential equations is an initial-value problem, and it
can be solved numerically (using for example a fourth-order Runge–Kutta routine),
if the entrainment coefficient α and the jet width ratio λ are properly defined. The
local entrainment coefficient is evaluated by the expression proposed by Priestley &
Ball (1955) (1), and the values proposed by Papanicolaou & List (1988) are used
for αj , αp and Rp , which respectively are 0.0545, 0.0875 and 0.63. However, the
asymptotic plume Richardson number Rp is re-evaluated following the suggestion by
Wang & Law (2002). Since the estimated local momentum flux is 10% higher than
the momentum computed from the time-averaged velocity profile,

Rp =
μβ1/2

(1.1m)5/4
=

0.63

(1.1)5/4
= 0.56. (17)

This value almost coincides with that proposed by Fischer et al. (1979) (Rp = 0.557),
estimated from the experiments by Rouse, Yih & Humphreys (1952) by taking into
consideration only the contribution of the mean kinematical momentum flux. The
Richardson number for a local buoyant jet is computed using the absolute value of
β , and it cannot be greater than Rp . This results in an entrainment coefficient which
does not exceed the plume entrainment coefficient αp . Therefore, the entrainment
coefficient is evaluated by (1) under the restriction R(s) �Rp .

The variable λ has been found to vary between two asymptotic values, λj and
λp , which correspond to jet and plume regimes, respectively. The values reported by
Papanicolaou & List (1988) are λj = 1.20 and λp =1.067. A formulation similar to
(2) regarding the entrainment coefficient can be used to compute λ as a function of
the local Richardson number of the flow. However, a constant λ= 1.20 will be used,
as it has been indicated to represent an average value over the whole range, from
jets to plumes. The variation of λ in negatively buoyant jets is vague, since there is
significant uncertainty in the available data, regarding their spreading rate. Moreover,
Jirka (2004) has shown that a constant value of λ usually gives good predictions.

The initial conditions will be applied at the virtual jet origin. Following List &
Imberger (1973), the virtual-jet origin is located at a distance so from the nozzle,
defined by Cp =Q/soM

1/2, beyond which self-similarity is implied. Papanicolaou &
List (1982) have evaluated the local jet width parameter Cp as

Cp =
μ(s)

m(s)1/2s
= 0.27. (18)

Substituting μ = Q and m =M in (18) (Q and M being the volume and specific
momentum fluxes respectively at the source), the virtual jet origin is located at a
distance so =

√
π/4/Cp = 3.28d , d being the jet diameter. Other researchers (e.g. Jirka

2004) have considered the jet origin to be coincidental with the end of the zone of
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flow establishment, i.e. at so = 5d . In the present model we assume the following initial
conditions valid at so = 3.28d:

mo = M, μo = Q, βo = B and θo = Θ, (19)

where B is the specific buoyancy flux at the source; Θ is the angle of inclination to
the horizontal at the source, and the subscript ‘o’ denotes values at the virtual origin.
It should be noted that if we consider so to be equal to 5d, then the initial volume
flux must be modified. Assuming that mo = M (momentum conservation), from (19)
and μo = Q

√
2 (Jirka 2004) one can obtain so

∼= 5d .
The derivation of the above integral formulation is similar to that of previous

integral models, predominantly developed to simulate positively buoyant jets (Fan
1967). The model predictions are subsequently compared to available experimental
data regarding the jet geometry and dilution.

2.2. Dimensional analysis and theoretical considerations

Let us consider a buoyant jet of density ρo, discharging vertically in an infinite volume
of calm ambient, with a linear density gradient dρa/dz. The buoyancy frequency N
(with dimensions T−1) is defined as

N2 = −g

ρ

dρa

dz
. (20)

If U is the uniform velocity at the source and ρa the local ambient fluid density,
then the initial volume flux and the specific (per unit mass) momentum and buoyancy
fluxes are defined as

Q = UA, M = QU and B = g′
oQ, (21)

respectively. The effective gravitational acceleration g′
o = g(ρa − ρo)/ρa can be either

positive (ρa > ρo) or negative (ρa <ρo). Two length scales based upon the initial
kinematic buoyant jet characteristics are defined as (Fischer et al. 1979)

lQ =
Q

M1/2
and lM =

M3/4

B1/2
, (22)

the ratio of which is defined to be the initially buoyant jet Richardson number

Ro =
lQ

lM
=

QB1/2

M5/4
=

(
π

4

)1/4
√

g′
od

U
. (23)

Ro is inversely proportional to the initial jet densimetric Froude number Fo = U/
√

g′
od .

When the initial momentum flux M is dominant, Ro → 0 (Fo → ∞), the jet is momentum
driven.

The vertical penetration depth Z of negatively buoyant jets discharging at an angle
Θ with respect to the horizontal depends upon the variables characterizing the source
conditions. Ignoring viscosity (as the jet is assumed to be turbulent) and the effect of
the initial volume flux Q (μ 
 Q far from the source), a general functional relationship
for the dependent variable Z is

Z = f (M, B, N, Θ). (24)

(a) In the case of a negatively buoyant jet at an angle Θ in a uniform ambient shown
in figure 1(a, b), (24) is written as Z = f (M, B, Θ) leading to (Turner 1966)

Z

lM
= C1(Θ), (25)
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where the normalized maximum penetration height is constant for each angle Θ . In
a similar manner the horizontal distance to the point of impingement Xi reads

Xi

lM
= C2(Θ). (26)

According to Roberts & Toms (1987), if Ro → 0 the dilution at the jet axis
Sc = �ρo/�ρc(s), �ρo = ρα − ρo, �ρc = ρα − ρc(s), is normalized as

Sc

Fo

= C3(Θ). (27)

(b) For a vertical positively buoyant jet in a linearly density-stratified ambient shown
in figure 1(c), (24) is written as Z = f (M, B, N ), leading to the relationship (Wong &
Wright 1988; Konstantinidou & Papanicolaou 2003)

Z

lj
= f

(
M

B
N

)
, lj =

M1/4

N1/2
. (28)

For an initially simple jet (B → 0) the normalized terminal rise height Zm and spreading
elevation Zs are written as

Zm

lj
= C4 and

Zs

lj
= C5. (29)

If the rise heights are normalized by the length scale lM then (29) may be written as

Zm

lM
= C4

(
MN

B

)−1/2

and
Zs

lM
= C5

(
MN

B

)−1/2

.

The mean elevation of lateral spreading Zs can be computed from the buoyancy
conservation equation at Zm, assuming no further mixing of the jet with ambient fluid
during its descent from Zm to Zs . At Zm the buoyancy flux is

β(Zm) =
�ρ

ρo

gμ(Zm); �ρ = ρ − ρα(Zm), (30)

with the overbar denoting the average density over the jet cross-section. Then,
substituting �ρ from (30) into (20) one can compute the distance �z below Zm

where the buoyancy of the reversing flow (assuming no further mixing with ambient
fluid) becomes neutral. This is the mean jet spreading elevation Zs computed from

N2 = − g

ρo

�ρ

�z
⇒ �z = Zs − Zm = − g

ρo

�ρ

N2
=

β(Zm)

N2μ(Zm)
. (31)

All the above jets disperse with negative buoyancy, relative to the direction of
movement. In case (b) though, the jet is slightly positively buoyant at the nozzle elev-
ation, but it becomes negatively buoyant almost immediately if MN/B 
 1 (Wong &
Wright 1988; Konstantinidou & Papanicolaou 2003). Then it climbs up to the elevation
Zm, where the momentum flux vanishes, and descends to the neutral buoyancy
elevation Zs , where it spreads laterally.

3. Experimental data for comparison
In this section, we will briefly describe the experiments performed by the authors

of this paper and presented elsewhere, from which data are taken for comparison.
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In addition, comparisons are made with results of other investigators, as discussed in
the next section.

Data regarding vertical buoyant axisymmetric jets in a linearly density-stratified
calm ambient were obtained by Konstantinidou & Papanicolaou (2003). The
experiments were carried out in a linearly stratified tank with dimensions 1.00 × 0.60 m
and 0.80 m deep. Reynolds numbers at the source were in the range 1000 < Re < 5200,
while the initial jet Richardson number varied from 0.007 to 0.4. They cover the
full range, from jets (small initial density difference between jet and ambient and
large momentum) to plumes (initial buoyancy flux being dominant compared to
the momentum); i.e. they extend in the range 0.1 <MN/B < 150 (see appendix B,
table 2).

Data for vertical negatively buoyant jets issuing into a homogeneous ambient were
obtained by Papanicolaou & Kokkalis (2008) in a tank of dimensions 0.80 × 0.80 m
and 1.00 m deep, for buoyancy-preserving (saltwater) jets, over a wide range of initial
Richardson numbers (0.02 to 0.1; see appendix B, table 3). The jets were turbulent
from the source (with the Reynolds numbers in the range 830 < Re < 5800), as the
transition to turbulence occurred naturally within five jet diameters.

Experiments regarding the terminal height of rise of inclined dense jets in a
homogeneous ambient have recently been reported by Papakonstantis et al. (2007).
Further analysis of those experiments has provided data regarding the distance from
the point of impingement. The tank used had the horizontal dimensions 3.0 × 1.5 m
and is 1 m deep. The jet pipe of diameter 0.6 cm was inclined at 45◦, 60◦ and 75◦

with respect to the horizontal. Reynolds numbers at the source exceeded 6000, while
the initial jet Richardson number varied from 0.015 to 0.039 (24 � Fo � 63). The
experimental conditions are shown in table 4, in appendix B. The measured lengths
were corrected for errors introduced from (i) the grid drawn in the front glass panel
and not in the centre of the tank where the jet evolves, (ii) the camera position and
(iii) the refractive index changes from air to glass to water. The correction procedure
is presented in appendix A.

4. Comparison of computed parameters with experiments
The data from the experiments mentioned in the last section are compared to

the Gaussian and the top-hat model predictions regarding the trajectory and the
dilution.

4.1. Vertical jet in a linearly stratified ambient

The results of the models are first compared to the data of Konstantinidou &
Papanicolaou (2003), shown in figure 2, regarding the maximum height of rise and
spreading elevation of a jet issuing in a linearly density-stratified environment. From
figure 2 it is seen that for large values of MN/B (>10) the measured maximum
normalized rise height Zm/lj takes a value of 3.5 to 3.6, while the average spreading
elevation data have substantial scatter in the range 2<Zs/ lj < 2.5. When the flow is
initially plume-like (MN/B � 1), both models predict the experimental findings quite
accurately. This flow is positively buoyant for most of its vertical path. When the flow
is initially jet-like (MN/B 
 1), though, both models underestimate the normalized
maximum height of rise and spreading elevation of the jet considerably. This flow is
negatively buoyant for most of its vertical path. The Gaussian model has predicted
Zm/lM =2.55 and Zs/ lM = 1.33, while the top-hat model predicted Zm/lM = 2.65
and Zs/ lM = 1.39. These values are lower than the measured ones Zm/lM = 3.55
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Zm/lj
Zm/lj, αj(G) = 0.0545
Zm/lj, αj(G) = 0.025

Zm/lj, αj (TH) = 0.0545
Zm/lj, αj (TH) = 0.025

Zs /lj
Zs /lj, αj(G) = 0.0545
Zs /lj, αj(G) = 0.025

Zs /lj, αj(TH) = 0.0545
Zs /lj, αj(TH) = 0.025

Z
/l

j

1
0.1

10

1 10 100

(M/B)N

1000

Figure 2. Comparison of model predictions with experiments by Konstantinidou &
Papanicolaou (2003) for the normalized maximum height of rise and mean spreading elevation
of vertical buoyant jets issuing in density-stratified fluid. G represents Gaussian and TH
top-hat predictions.

and Zs/ lM = 2.25, Zm being the elevation where the momentum vanishes. It is noted
that the jet width

√
2b or b (in Gaussian and top-hat modelling respectively) has not

been added to the computed elevation.
Good agreement with the measured normalized maximum height of rise and

spreading elevation of a jet (MN/B 
 1) issuing in a linearly density-stratified
environment was obtained by reducing the jet entrainment coefficient αj from 0.0545

to 0.025 as shown in figure 2. (The values of αj must be multiplied by
√

2 in top-hat
modelling.) The predicted normalized elevation of vanishing momentum Zm/lM and
lateral spreading Zs/ lM are 3.66 and 2.13 for top-hat and 3.50 and 2.02 for Gaussian
modelling, respectively. These results compare well with the experimental data of
Konstantinidou & Papanicolaou (2003), as shown in figure 2, and the measurements
by Wong & Wright (1988), mentioned in the introduction.

It is concluded that if we reduce the jet entrainment coefficient of a vertical jet
(MN/B 
 1) issuing into a linearly stratified fluid, we can obtain the maximum rise
height predicted by experiments without having to add the jet width to the elevation
where the momentum vanishes, as proposed in Corjet. In addition, the computed
spreading elevation, which after all is the important parameter indicative of the
dilution obtained, is quite close to the experimental value, whereas it is underestimated
by about 30% by Corjet (Jirka 2004). Lower spreading elevations indicate an increased
rate of mixing, attributed to the higher jet entrainment coefficient applied. A deviation
of the same order is obtained regarding the maximum height of rise without adding
the term

√
2b to the computed centreline elevation. This may indicate that the width√

2b should not be added to the predicted maximum height in vertical jets.
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Figure 3. Computed normalized jet width b/lM versus the dimensionless distance s/lM from
the origin of dense jets inclined at different angles.

4.2. Inclined and vertical jets in a homogeneous ambient

The trajectory and the visual boundaries of inclined negatively buoyant jets in a
uniform ambient were computed using both Gaussian and top-hat velocity and
excess density distributions and are subsequently compared to experimental data
(Papakonstantis et al. 2007; Papanicolaou & Kokkalis 2008). The jet trajectory is
assumed to be that of the centreline. The visual boundaries are computed by adding
the perpendicular jet width

√
2b (or b in top-hat modelling), on each side of the jet

trajectory (Jirka 2004). The experiments by Papakonstantis et al. (2007) provide data
regarding only the visual jet boundaries and not the centreline trajectory. Evaluation
of the appropriate jet width b is critical for the model performance, and therefore it is
pertinent to examine the behaviour of the computed jet width in momentum-driven
flows.

A jet with initial Richardson number Ro ≈ 0.03 (Fo ≈ 32) is studied for inclination
angles of 30◦, 45◦, 60◦, 75◦, 80◦, 85◦ and 90◦ (vertical), using the Gaussian formulation.
In figure 3 the normalized computed jet width b/lM is plotted against the normalized
trajectory s/lM , s being the trajectory length from the jet origin. One may clearly
note the nonlinear growth of the jet width with s. At inclination angles Θ < 60◦, the
growth of the jet width (1.5< s/lM < 2.5) is quite smooth. At higher inclination angles
(Θ > 60◦), the computed jet width around the inflection point (maximum centreline
elevation on which the vertical momentum vanishes) grows rapidly and becomes
quite large, then decreases also rapidly after that point and grows again smoothly for
s/lM > 2.5. When the jet is vertical its width attains the highest growth rate. However,
as observed from our experiments, the large-scale structures increase monotonically
along the jet trajectory. Therefore, the computed jet width around the inflection point
should be limited by a value allowing its monotonic growth. From figure 3 it is
evident that around the maximum rise height, the jet width cannot exceed a limiting
value of about 0.3lM . Jirka (2004) reports that Corjet predicts terminal heights equal
to 1.9lM and 2.2lM for inclined jets at angles of 60◦ and 90◦ (vertical jet), respectively.
These results correspond to a jet width approximately equal to 0.39lM (visual width
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Figure 4. Comparison of model predictions with experiments by Papanicolaou & Kokkalis
(2008), for the maximum and terminal (steady state) penetration depths of vertical dense jets
issuing into homogeneous ambient. G represents Gaussian and TH top-hat predictions.

b
√

2 = 0.39
√

2lM ) in both cases. However, the corresponding computed jet widths are
found to be 0.31lM and lM for 60◦ and 90◦ (vertical jet) respectively, as shown in
figure 3. Similar jet width behaviour is observed when the top-hat formulation is
employed. The limiting value of the jet width is 0.47lM ≈ 0.3

√
2lM .

Therefore, in the computations which follow regarding the maximum elevation of
the upper jet boundary (terminal height of rise), the width added to the maximum
centreline elevation is chosen as follows: (i) when Θ � 60◦, b is the computed jet
width b(s) = μ(s)/[2πm(s)]1/2; (ii) when Θ > 60◦, b = 0.3lM and 0.47lM for Gaussian
and top-hat modelling respectively; and (iii) for Θ = 90◦, b = 0 (see § 4.1). The jet
boundaries beyond the terminal rise height (s/lM < 1.5 and s/lM > 2.5) are obtained
using the computed jet width b(s).

The data of Papanicolaou & Kokkalis (2008) are compared to the model results
for vertical initially jet-like flows (Ro < 0.1) in figure 4. The normalized measured
maximum and terminal penetration depths take the values Zmax/ lM = 3 and Z/lM = 2
respectively. Using the conventional jet entrainment coefficient (αj = 0.0545 for the

Gaussian model or αj = 0.0545
√

2 for the top-hat model), the computed, normalized
terminal rise height Z/lM is 1.70 and 1.87 with the Gaussian and top-hat formulations
respectively, indicating significant underestimation when compared to the measured
values, especially for the Gaussian model. Greater rise height (Z/lM ≈ 2.10) is obtained

if the jet entrainment coefficient is reduced to 0.030 and 0.040
√

2 with the Gaussian
and top-hat formulations, respectively. (The latter value has also been proposed by
Kaminski et al. 2005.)

The experiments by Papakonstantis et al. (2007) for 45◦, 60◦ and 75◦ inclined
negatively buoyant jets are simulated, and the computed terminal (steady state)
heights of rise are compared to the measured heights in figures 5, 6 and 7, respectively.
The Gaussian model (for αj = 0.0545) predicts heights 1.36lM , 1.79lM and 2.03lM for
Θ equal to 45◦, 60◦ and 75◦ respectively, values which are lower than the mean
measured heights (1.57lM , 2.12lM and 2.47lM ), showing that the Gaussian model
considerably underestimates the height of rise in all cases. On the other hand,
the top-hat formulation gave greater heights than the Gaussian one for the same jet



On the entrainment coefficient in negatively buoyant jets 459

2.0

1.5

Z
/l

M

1.0

αj(G) = 0.0545

αj(G) = 0.030

αj(TH) = 0.0545 √2

αj(TH) = 0.040 √2

0.01
Ro

0.1

Papakonstantis et al. (2007)

Figure 5. Comparison of model predictions with experiments by Papakonstantis et al. (2007)
for the terminal rise height of 45◦ inclined dense jets. G represents Gaussian and TH top-hat
predictions.

3.0

2.5

2.0

1.5

Z
/l

M

1.0

αj(G) = 0.0545

αj(G) = 0.030

αj(TH) = 0.0545 √2

αj(TH) = 0.040 √2

0.01
Ro

0.1

Papakonstantis et al. (2007)

Figure 6. Comparison of model predictions with experiments by Papakonstantis et al. (2007)
for the terminal rise height of 60◦ inclined dense jets. G represents Gaussian and TH top-hat
predictions.

entrainment coefficient, simulating the experimental results more accurately. However,
the predictions are still lower than the experimental data (table 1). Using a lower jet
entrainment coefficient αj = 0.03 (Gaussian formulation) and αj = 0.040

√
2 (top-hat

formulation) in inclined jets, the measured terminal heights are accurately predicted,
as shown in figures 5, 6 and 7.

In summary, the performance of Gaussian modelling regarding the prediction of
the terminal rise height is investigated in terms of the jet width b and the angle
of inclination Θ , including unpublished data from ongoing experiments by Ilias



460 P. N. Papanicolaou, I. G. Papakonstantis and G. C. Christodoulou

3.0

2.5

2.0

1.5

Z
/l

M

1.0

αj(G) = 0.0545

αj(G) = 0.030

αj(TH) = 0.0545 √2

αj(TH) = 0.040 √2

0.01
Ro

0.1

Papakonstantis et al. (2007)

Figure 7. Comparison of model predictions with experiments by Papakonstantis et al. (2007),
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predictions.

Gaussian model
Measured

Θ αj Zc/lM b/lM (Zc + b
√

2)/lM Z/lM

45◦ 0.0545 0.98 0.27 1.36 1.57
60◦ 1.35 0.31 1.79 2.12
75◦ 1.61 0.30 2.03 2.47
80◦ 1.66 0.30 2.08 –
85◦ 1.69 0.30 2.12 2.51
90◦ 1.70 0.00 1.70 2.00
45◦ 0.030 1.23 0.23 1.56 1.57
60◦ 1.68 0.28 2.08 2.12
75◦ 2.00 0.30 2.42 2.47
80◦ 2.06 0.30 2.49 –
85◦ 2.10 0.30 2.53 2.51
90◦ 2.12 0.00 2.12 2.00

Top-hat model
Measured

Θ αj Zc/lM b/lM (Zc + b)/lM Z/lM

45◦ 0.0545
√

2 1.08 0.42 1.50 1.57
60◦ 1.48 0.50 1.97 2.12
75◦ 1.76 0.47 2.23 2.47
80◦ 1.82 0.47 2.29 –
85◦ 1.86 0.47 2.33 2.51
90◦ 1.87 0.00 1.87 2.00

45◦ 0.040
√

2 1.21 0.40 1.61 1.57
60◦ 1.65 0.47 2.12 2.12
75◦ 1.97 0.47 2.44 2.47
80◦ 2.03 0.47 2.50 –
85◦ 2.07 0.47 2.54 2.51
90◦ 2.09 0.00 2.09 2.00

Table 1. Measured and predicted terminal height of rise of jets inclined at different angles.
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G. Papakonstantis regarding the 85◦ angle. In figure 8 the following normalized rise
heights are plotted as a function of the inclination angle:

Zc

lM
centreline elevation (αj = 0.0545);

Zc + bmax

√
2

lM
maximum rise height, using the computed jet width (αj = 0.0545);

Zc + b
√

2

lM
maximum rise height, using b = 0.30lM for 60◦ < Θ < 90 (αj = 0.0545);

Zc + b
√

2

lM
maximum rise height, using b = 0.30lM for 60◦ < Θ < 90 (αj = 0.030).

For Θ = 90◦ only the predicted axial elevation is used, as the width grows in the
horizontal direction. One may note that if the computed jet width is added to the
maximum axis elevation, the model underestimates the terminal height of rise for
angles Θ up to about 80◦, whereas it overestimates it for greater angles. When an
upper bound for the jet width is set (b = 0.30lM ), as discussed previously, then the
maximum rise height is systematically lower than the measured one for αj =0.0545.
However, if a reduced value of the jet entrainment coefficient is employed (αj = 0.030),
the model predictions are in agreement with the experiments by Papakonstantis et al.
(2007) for all inclination angles. The model predictions and the corresponding
measured values for the terminal height of rise are summarized in table 1.

Detailed data for the jet trajectory have not been reported by Papakonstantis et al.
(2007). However, analysis of the available experiments has provided the relevant data
used in the present work. In figure 9 the model is compared to the experimental data
regarding the trajectory of a 45◦ inclined dense jet with Ro = 0.0295 (Fo = 31.90). It is
evident that the model predictions using the conventional value of the jet entrainment
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Figure 10. Comparison of model predictions with experiments for the horizontal distance to
the point of impingement in dense jets inclined at 45◦. G represents Gaussian and TH top-hat
predictions.

coefficient (αj = 0.0545) diverge from the measured trajectory, whereas if αj = 0.030
is used, model predictions are in agreement with measurements.

Regarding the distance from the point of impingement, comparison of the
experimental and numerical results is shown in figures 10 and 11 for inclined jets
at 45◦ and 60◦, respectively. Top-hat modelling with αj = 0.0545

√
2 gives higher

values compared to those of the Gaussian one (αj = 0.0545), although both models
underestimate considerably the distance Xi to the point of impingement. If the reduced
values of the jet entrainment coefficient used above are employed, the predictions of
the distance Xi are in agreement with measurements for Θ = 45◦ but continue to
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Figure 11. Comparison of model predictions with experiments for the horizontal distance
from the point of impingement in dense jets inclined at 60◦. G represents Gaussian and TH
top-hat predictions.

deviate from the measurements for Θ = 60◦. However, model prediction regarding
the location of the jet axis at the point of impingement is congruent with the value
measured by Roberts et al. (1997), Xc = 2.55lM , which is also predicted by Gaussian
and top-hat modelling for αj = 0.030 and αj =0.040

√
2, respectively.

Dilution measurements in inclined dense jets at 60◦ have been reported by Roberts
& Toms (1987). The measured centreline time-averaged dilutions St (at the terminal
height of rise) and Si (at the point of impingement) are 0.38Fo for Fo > 25 and 1.03Fo

for Fo > 12, respectively. The Gaussian model (for αj = 0.0545) applied for Fo
∼=26

predicts St = 0.35Fo and Si = 0.84Fo. Although the height of rise is considerably
underestimated, the dilution is well predicted. However, the dilution at the point of
impingement is substantially underestimated.

If a lower value αj (0.030) is used, the model predicts St = 0.32Fo for the same initial
Froude number, showing that the dilution at the terminal height of rise decreases,
since the rate of entrainment in the jet regime is lower. However, the dilution at the
point of impingement of the centreline increases (Si =0.92Fo), since the trajectory has
been elongated, and it is in satisfactory agreement with that measured by Roberts
& Toms (1987). Top-hat modelling can only predict the average dilution; therefore
comparison with measurements would be invalid.

5. Discussion
For the calculation of the spreading elevation of jets in linearly density-stratified

ambient, re-entrainment has been neglected. A jet with zero or slightly positive
buoyancy at the source, issuing in a linearly density-stratified fluid, reaches the
terminal height, and it subsequently but slowly returns to the spreading elevation,
entraining mostly mixed fluid from the wastefield. After steady state has been reached
the overshoot of the jet above the top boundary is quite small, and further mixing
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while descending is considered to be negligible. Jets with initially slightly positive
or negative buoyancy have the same asymptotic behaviour as pure jets, i.e. for
(M/B)N > 10.

So far, in inclined jets we have considered the terminal height of rise to be the
sum of the maximum trajectory elevation and the jet width b for top-hat modelling.
For Gaussian modelling, the width is multiplied by

√
2 (Jirka 2004). In vertical jets

the visual width has not been added to the predicted axis elevation. The large-scale
structures in round jets or plumes have a diameter that is approximately twice the size
of their visual width, i.e. 2

√
2b. In an inclined jet, the sequence of large-scale structures

determines the upper and lower jet visual boundaries with respect to the axis. The
maximum elevation of the upper boundary can be obtained by adding half the size of
the large-scale structures (

√
2b) to the local maximum height of the jet axis. However,

in a vertical fountain, the sequence of large-scale structures may be noted as a result of
the fluctuating elevation of vanishing momentum. Moreover the lateral spreading of
the jet boundaries is in the horizontal direction, i.e. normal to the height. Therefore, the
term (

√
2b) does not have to be added to the elevation where m= 0. The comparison

with the experimental data regarding the maximum height of rise and the spreading
elevation of a jet issuing into a stratified environment has showed that this approach
is valid.

The computed jet width around the terminal rise height (point of inflection of
jet trajectory) was investigated and found to increase dramatically for Θ > 60◦ and
become theoretically infinite at 90◦ (vertical jet). The jet width is a measure of the
‘radius’ of the large-scale structures, as they evolve towards the terminal elevation (of
vanishing vertical momentum). At large initial inclination angles though, the large-
scale jet structures start to collapse around the terminal elevation, where they become
wider and flatter. However, pairing of two subsequent large-scale structures cannot
produce one that grows explosively. In the vertical jet, the computed normalized
width was found equal to lM , while the observed visual jet width at the terminal
rise height from the experiments by Papanicolaou & Kokkalis (2008) does not
exceed 0.4lM . Similar observations have been made for jets inclined at lower angles.
Consequently, in inclined jets at angles Θ > 60◦, the calculations indicate that when
1.5 < s/lM < 2.5 a limiting value of approximately 0.3lM should be considered for
Gaussian modelling and approximately 0.47lM for top-hat modelling. These values
are the upper limits of the width in 1.5< s/lM < 2.5, so that monotonic growth is
maintained.

Top-hat modelling has generally provided better predictions than the Gaussian one,
a result that does not generally agree with the findings in positively buoyant jets.
This is true whether a constant or a variable value (between λj and λp) of λ is used.
Varying λ according to an expression similar to that employed for the entrainment
coefficient, (1) or (2), the differences in computed rise heights are not significant (less
than 0.10lM ). Consequently, the question that arises is whether a Gaussian distribution
of the time-averaged velocity and excess density is appropriate. In positively buoyant
jets the maximum time-averaged local effective gravitational acceleration is located
at the jet ‘core,’ within a width b from its axis. Thus the jet core is continuously
accelerating, because of the concentrated local force there, resulting in a Gaussian
velocity distribution. In other words we may state that if the effective gravity is in
phase (acting on the same direction) with velocity, the distribution of the latter is
Gaussian, since the shear around the boundaries of large-scale structures results in
lateral momentum transfer. In negatively buoyant jets though, the strongest effective
gravity around the axis locally decelerates the moving fluid. Assuming initially a
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Gaussian velocity distribution in a jet with negative buoyancy (with velocity and
effective gravity being out of phase), the strong negative effective gravity in the jet
‘core’ decelerates the fluid locally faster than the lower effective gravity around the jet
boundary. The shear stress between the jet and the ambient fluid is therefore reduced
with distance from the origin. This may result in a more ‘uniform’ velocity distribution
that is closer to top hat than to Gaussian, explaining why the computations using
top-hat modelling give predictions that are closer to the measurements. However,
measurements of the velocity and concentration profiles across the jet are required in
order to clarify the form of the distribution.

Regarding the elevation where the initial conditions are applied, experimental
observations indicate that the virtual origins of vertical negatively buoyant jets as
well as jets in linear stratification are quite close to the source. Assuming that the
virtual origin is located at the source (zo = 0), the prediction of Z/lM is not any
different from the case in which zo = 3.28d. However, the numerical results fit the
experimental data better for zo = 3.28d, a value that is compatible with the theory by
List & Imberger (1973).

In the entrainment modelling a sophisticated (implicit) formula proposed by
Kaminski et al. (2005) and evaluated by Carazzo et al. (2006) could also be used.
However, the (explicit) expression proposed by Priestley & Ball (1955) is sufficient for
the purpose of the paper, and it is also easier to use.

A question to be answered is why the entrainment coefficient is reduced in negatively
buoyant jets. A jet can be modelled as a sequence of sinks along its axis, each of
them sucking fluid from a slice of thickness �s normal to the axis. The rate of
entrainment at distance s from the origin is proportional to the strength of the
local sink, resulting in a negative pressure gradient in the radial direction. If a jet
is momentum-driven (not much change in initial jet momentum) one may note the
following:

(i) In positively buoyant jets the buoyancy accelerates the ‘core’ of the jet, thus
increasing the sink strength, since the radial pressure gradient becomes steeper. The
rate of entrainment keeps increasing, up to the point of equilibrium (plume-like flow),
where it attains a constant value.

(ii) In negatively buoyant jets, the out of phase, negative buoyancy decelerates the
jet ‘core,’ thus reducing the radial pressure gradient and consequently the strength of
the local sink. Therefore, the rate of entrainment will be reduced, compared to that
of simple jets. Experimental evidence presented in this paper suggests values of 0.030
and 0.025 for negatively buoyant jets in homogeneous and linearly stratified ambient
respectively.

For top-hat modelling, the present results show that good agreement with
experiments is obtained for a value of αj = 0.040

√
2, which is considerably lower than

the value commonly used for positively buoyant jets (αj =0.0545
√

2 ≈ 0.077) and
close to that suggested by Kaminski et al. (2005). The reason why different values
for αj are found appropriate for Gaussian and top-hat formulations, in contrast to
positively buoyant jets, requires further investigation.

6. Conclusions
Integral one-dimensional modelling is a valuable tool for simulating turbulent

buoyant jets. Gaussian and top-hat modelling were employed to simulate negatively
buoyant flows which initially are momentum-driven; i.e. their initial Richardson
number Ro is very low. When the buoyancy is reversing or acting against the direction
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of the flow, the main geometrical parameters and dilution are underestimated if
conventional values for the jet entrainment coefficient are used. Top-hat modelling
seems to give better predictions than the Gaussian one, pointing out the need for
experimental verification of the shape of velocity and concentration distributions in
such flows.

Comparison of the model with experimental data regarding the trajectory and
mainly the rise heights of inclined and vertical negatively buoyant jets in a
homogeneous or linearly stratified ambient, as well as the distance from the point of
impingement and the corresponding centreline dilution in inclined negatively buoyant
jets in a uniform environment, showed improved model performance when a lower
value of the jet entrainment coefficient was employed. The value of this coefficient in
a homogeneous calm ambient was found to be about 0.030 and 0.040

√
2 for Gaussian

and top-hat modelling respectively, while a somewhat lower value of αj (0.025) was
required to predict the maximum height and spreading elevation in vertical jets issuing
in a linearly stratified fluid.

In summary, it is indirectly concluded that in jets with negative buoyancy, the
entrainment in the momentum-driven flow regime is significantly reduced. Since
a higher entrainment rate results in higher dilution rates, proper evaluation of
the entrainment coefficient is very important for the simulation of such flows.
Experimental investigation for the direct evaluation of the entrainment in negatively
buoyant jets via extensive velocity measurements is required.

The support to I.G. P. through a PhD grant from the research committee of the
National Technical University of Athens is gratefully acknowledged.

Appendix A. Correction procedure for the measured lengths
The length measurements were obtained using the jet image and the grid drawn

in the front glass panel of the dispersion tank. Therefore, the lengths observed on
the grid are different than the actual ones, because of the distance of the jet axis
plane from the glass and the differences in the refractive index between air and
water. If the normal distance between the camera and the front glass panel (where
the grid is drawn) at point (x, z) = (0, 0) is Y, then a reading (xg , zg) on the grid
must be converted to real jet coordinates (x, z) by adding the correction lengths
�x and �z respectively. Applying Snell’s law, the correction lengths are obtained as
�x =(W/2)tan(ϕr ) and �z = (W/2)tan(θr ). The distance of the jet axis plane from
the front glass panel is W/2, and ϕr and θr are angles computed as

φr = sin−1

(
sinφi

na

nw

)
and θr = sin−1

(
sin θi

na

nw

)
, (A 1)

where

φi = tan−1

(
xg

Y

)
and θi = tan−1

(
zg

Y

)
, (A 2)

and na , nw are the refractive indices of air and water respectively. The glass panel
thickness has been neglected in these calculations. The magnitude of the corrections
(�x/x and �z/z) made did not exceed 7%. The error in the computation of the
actual coordinates of the jet trajectory is of the order of 2.5 mm, the length that
corresponds to the pixel size.
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Appendix B. Initial conditions of experimental data

Q (cm3 s−1) �ρ/ρo (%) N−2 (s−2) Ro Re Q (cm3 s−1) �ρ/ρo (%) N−2 (s−2) Ro Re

46.76 1.09 0.130 0.052 5180 29.72 0.05 0.116 0.017 3290
38.32 1.09 0.130 0.063 4240 43.40 0.05 0.116 0.012 4810
9.32 1.09 0.130 0.260 1030 10.52 0.02 0.140 0.031 1170

46.76 0.95 0.100 0.048 5180 15.02 0.02 0.140 0.022 1660
39.73 0.95 0.100 0.057 4400 25.35 0.02 0.140 0.013 2810
25.65 0.95 0.100 0.088 2840 35.75 0.02 0.140 0.009 3960
22.42 0.95 0.100 0.101 2480 43.96 0.02 0.140 0.007 4870
10.83 0.95 0.100 0.209 1200 11.43 0.07 0.106 0.053 1270
7.50 0.95 0.100 0.302 830 16.51 0.07 0.106 0.037 1830

12.03 1.05 0.103 0.198 1330 29.72 0.07 0.106 0.021 3290
29.72 1.05 0.103 0.080 3290 32.60 0.07 0.106 0.019 3610
41.15 1.05 0.103 0.058 4560 39.17 0.07 0.106 0.016 4340
46.76 1.05 0.103 0.051 5180 45.92 0.07 0.106 0.013 5080
10.22 0.97 0.077 0.223 1130 12.03 0.109 0.101 0.064 1330
25.06 0.97 0.077 0.091 2780 16.21 0.109 0.101 0.047 1800
39.45 0.97 0.077 0.058 4370 29.14 0.109 0.101 0.026 3230
45.08 0.97 0.077 0.050 4990 36.61 0.109 0.101 0.021 4050
15.02 0.05 0.146 0.034 1660 42.28 0.109 0.101 0.018 4680
28.27 0.05 0.146 0.018 3130 9.92 0.0099 0.077 0.023 1100
38.32 0.05 0.146 0.013 4240 15.92 0.0099 0.077 0.014 1760
45.08 0.05 0.146 0.011 4990 23.89 0.0099 0.077 0.010 2650
12.03 0.13 0.108 0.069 1330 35.18 0.0099 0.077 0.007 3900
19.48 0.13 0.108 0.043 2160 43.40 0.0099 0.077 0.005 4810
36.32 0.13 0.108 0.023 4020 12.03 0.467 0.066 0.132 1330
41.15 0.13 0.108 0.020 4560 18.89 0.467 0.066 0.084 2090
46.76 0.13 0.108 0.018 5180 32.60 0.467 0.066 0.049 3610
10.83 0.15 0.103 0.083 1200 41.71 0.467 0.066 0.038 4620
20.95 0.15 0.103 0.043 2320 46.76 0.467 0.066 0.034 5180
28.85 0.15 0.103 0.031 3190 10.22 2.442 0.043 0.354 1130
38.32 0.15 0.103 0.023 4240 25.65 2.442 0.043 0.141 2840
43.12 0.15 0.103 0.021 4770 40.58 2.442 0.043 0.089 4490
11.13 0.05 0.116 0.046 1230 18.00 2.442 0.043 0.201 1990
13.53 0.05 0.116 0.038 1500 9.02 2.442 0.043 0.401 1000
20.66 0.05 0.116 0.025 2290

Table 2. Initial conditions of experiments of round (d =1 cm) vertical jets in a linearly
density-stratified ambient by Konstantinidou & Papanicolaou (2003).
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d (cm) Q (cm3 s−1) �ρ/ρo (%) Ro Re

0.50 26.39 1.09 0.016 5840
0.50 22.82 1.09 0.019 5050
0.50 26.39 1.58 0.02 5840
0.50 16.15 0.70 0.021 3980
0.50 22.82 1.58 0.023 5050
0.50 21.03 1.58 0.025 4660
0.50 15.67 1.58 0.033 3470
0.75 26.32 0.70 0.035 4320
0.50 12.10 1.58 0.043 2680
0.50 9.07 1.68 0.058 2010
0.50 9.95 2.45 0.065 2200
0.50 7.66 1.58 0.069 1700
0.50 9.07 2.45 0.071 2010
0.50 8.19 2.45 0.079 1810
0.50 7.30 2.35 0.088 1620
0.50 7.30 2.45 0.089 1620
1.00 38.04 2.35 0.095 4210

Table 3. Initial conditions of experiments of round vertical negatively buoyant jets in a
homogeneous ambient by Papanicolaou & Kokkalis (2008).

Θ (deg.) d (cm) Q (cm3 s−1) �ρ/ρa Ro Reo

45 0.6 31.51 2.07 0.030 6690
45 0.6 40.94 2.06 0.023 8690
45 0.6 51.50 2.06 0.018 10930
45 0.6 60.51 2.03 0.015 12840
45 0.6 33.02 3.05 0.034 7010
45 0.6 45.64 3.04 0.025 9680
45 0.6 54.72 3.04 0.021 11610
45 0.6 29.64 3.05 0.038 6290
60 0.6 37.63 2.49 0.027 7990
60 0.6 49.74 2.47 0.020 10550
60 0.6 57.62 2.43 0.017 12230
60 0.6 39.53 3.52 0.031 8390
60 0.6 52.75 3.49 0.023 11200
60 0.6 31.25 3.01 0.036 6630
60 0.6 43.26 3.00 0.026 9180
60 0.6 50.95 2.07 0.018 10810
75 0.6 29.37 3.11 0.039 6230
75 0.6 33.87 3.12 0.034 7190
75 0.6 37.95 3.14 0.030 8050
75 0.6 43.26 3.13 0.026 9180
75 0.6 54.57 3.12 0.021 11580
75 0.6 57.19 3.12 0.020 12140
75 0.6 49.57 3.12 0.023 10520

Table 4. Initial conditions of experiments of inclined negatively buoyant jets in homogeneous
ambient by Papakonstantis et al. (2007).
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